bacterial genetics

October 24-28

On Monday and Wednesday in molecular biology, Dr. Peng lectured on RNA splicing mechanisms and RNA editing. He reviewed important proteins and nucleic acids in the spliceosome such as snRNPs (small nuclear RNA paired with protein). He also went over the three ways of splicing an RNA – nuclear pre-mRNA, group I introns, and group II introns. We then moved on to alternative splicing and RNA editing such as site-specific deamination and RNA-directed uridine insertion/deletion.

On Tuesday and Thursday in biochemistry, Dr. Popescu began the chapter on carbohydrates and glycobiology. We started with basic structures of monosaccharides including open chain and ring forms and moved to disaccharides formed via glycosidic bonds, before looking at structures and metabolism of common polysaccharides including glycogen, starch, cellulose, and chitin. We concluded the chapter discussing the biological function of glycoconjugates – glycolipids, glycoproteins, and proteoglycans. In bacterial physiology, we concluded the section on metabolism by learning about the tricarboxylic acid cycle (TCA cycle), the electron transport chain, oxidative phosphorylation, and the 5 types of fermentation in bacteria (lactic acid, ethanol, butyric acid, mixed acid, and propionic acid fermentation).

On Friday in bacterial genetics lab, we performed plasmid preparation to separate the plasmids from the E. coli and chromosomal DNA and proteins. Dr. Brown also lectured on Sanger sequencing in preparation for analysis of our sequences.

Advertisements

October 10-21

The Monday before fall break, I had a test in molecular biology on DNA mutability and repair, homologous recombination, site-specific recombination, and transposition of DNA. The Monday and Wednesday after fall break, Dr. Peng reviewed transcription mechanisms in bacteria and eukaryotes.

In biochemistry on Tuesday, we had a review for the test on Thursday. The test covered protein metabolism, enzymes, nucleotides and nucleic acids, regulation of gene expression, and DNA-based technologies. In bacterial physiology, Dr. Roberts reviewed bacterial metabolism, including the Embden–Meyerhof–Parnas (EMP) pathway, the Entner–Doudoroff (ED) pathway, and the pentose phosphate pathway (PPP), focusing on key intermediates, enzymes, and regulators.

In bacterial genetics lab on Friday, we prepared a restriction fragment length polymorphism (RFLP) assay on our PCR products.